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The field of computational chemistry has established that
molecular orbital theory is a useful and fundamental way of
representing and simulating molecular structure. Energetics of
molecular orbitals has provided a direct window to experimentally
measured quantities, mainly spectroscopic observables. In this
communication, we first show that orbital energy fluctuations, based
on canonical ab initio molecular dynamics simulations, exhibit
significant asymmetry. We hypothesize that the asymmetry of
orbital energy fluctuation will reflect how the molecule interacts
with the environment. To test this hypothesis, we developed a new
class of QSAR/QSPR descriptors, termed DYNEVA (DYNamic
EigenVAlues). This work posts an improvement upon the predictive
power of quantum mechanically derived descriptors by including
the temporal dimension of atomic orbital energetics, further support
that capturing the evolution of fundamental quantities can lead to
more accurate prediction of biomolecular interaction.

This investigation has been inspired by an earlier and successful
QSAR approach, EEVA, which uses quantum mechanically derived
electronic structure information (electronic eigenvalues) as the basis
for descriptors. In EEVA, a Gaussian spread (σ) is applied to each
eigenvaluesthe underlying assumption being that the energy
distribution is symmetricsto create a pseudospectrum which is then
divided into intervals. The integral of each interval leads to a single
EEVA descriptor.1 Our investigation was further inspired by a
significant body of work striving to account for conformational
flexibility in the context of QSAR. Hopfinger has developed
descriptors as measures of conformational flexibility and/or en-
tropy.2 Dobler and Vedani allow the representation of molecules
by an ensemble of conformations, orientations, and protonation
states.3 Likewise, Mekenyan and co-workers have developed a
probabilistic descriptor weighting approach that takes conforma-
tional flexibility into account to improve model quality.4 The
ALPHA descriptor is derived from Gaussian smoothing of power
spectra and, like EEVA, requires a spreading parameter.5

We posit that asymmetric behavior in molecular orbital energetics
is due to individual orbital response to local intramolecular fields
that fluctuate through dynamical evolution of the molecule. To test
our hypothesis, we use ab initio Density Functional Theory (DFT)-
based Car-Parrinello molecular dynamics (MD).6 Canonical finite
temperature MD simulations are performed at 800 K, accomplished
by using a Nose-Hoover thermostat (a single mass, oscillating at
30.5 THz). Orbital eigenvalues, total energy, and energy constituents
are recorded at regular intervals of 7.25 fs.

To illustrate the power of this approach, we use DYNEVA
descriptors to build QSAR/QSPR models for two structurally
diverse, evenly distributed datasets constructed from published data
of pharmacological interest: (1)R4â2 neuronal nicotinic receptor

(NNR) affinity (Ki),7 and (2) Topliss oral bioavailability.8 The
asymmetric nature of the eigenvalue data is depicted in a histogram
of the absolute difference between mean and median values for
each dataset (Figure 1A,B); the magnitude of|mean-median| is
an illustration of the distributional asymmetry. We point out that
this difference can be as high as 0.045 eV. Digging deeper, we
plot example histograms of the HOMO for molecules TC-2216
(Figure 2A), terbutaline (Figure 2B), and ethosuximide (Figure 2C),
illustrating the striking asymmetry of individual orbital distributions.
Interestingly, there is a marked difference in the bioavailability
between 2B and 2C. Finally, we chart the|mean-median| values
of the highest 20 orbitals of all three example molecules (Figure
3). We posit that the asymmetric distribution of these data
(presumably due to the interaction of local, intramolecular fields)
contains more information than the symmetric approximation and
may provide further insight into molecular recognition phenomena.
Additionally, DYNEVA may be useful for differentiation of broad-
based biological properties.
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Figure 1. The asymmetric nature of the dynamic eigenvalue data is
illustrated for Topliss (A) andR4â2 (B) datasets. Histograms represent the
|mean-median| of all the electronic eigenvalues for all the molecules in
the datasets.|mean-median| ) 0 implies a symmetric distribution. Data
were collected using 30 ps of Car-Parrinello molecular dynamics.

Figure 2. Eigenvalue distribution data by orbital for molecules TC-2216
(diamonds), terbutaline (circles), and ethosuximide (squares). The 20 highest
energy orbitals|mean- median| are displayed.
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One can assume that the harmonic vibrations of a molecule at
finite temperature induce an oscillating intramolecular potential that
acts as a perturbation on the electronic states. The probability
distribution for each eigenvalue can thus be estimated by assuming
equipartition of energy and by using perturbation theory. In the
first order of the perturbing potential, the probability distribution
of each eigenvalue is given by a sum of Gaussians (one for each
normal mode) centered at the unperturbed eigenvalue, so that the
probability distribution remains symmetric. The asymmetry in the
distribution (as seen in Figure 3) enters via second-order perturba-
tion. These terms are quadratic in the perturbing potential, and their
strength depends on the extent of coupling between different states.9

For the HOMO and LUMO states, which are most important in
forecasting molecular reactivity and binding, the asymmetry in the
eigenvalue distribution is related to the HOMO-LUMO gap. This
measure is, however, more sophisticated than just the HOMO-
LUMO gap because it includes the effect of the molecular vibrations
on the eigenstates. The extent to which conformational dynamics
contributes to asymmetry in the eigenvalue signature is a matter of
further investigation. Next, we build descriptors to map this
fluctuation in a form highly applicable to QSAR and QSPR studies.
Before describing DYNEVA, we remind the reader that the number
of eigenvalues varies between molecules, thus direct comparison
is precluded. As a solution, eigenvalue trajectories (histograms) are
registered on a common energy scale, which is then divided into
250 bins of equal width. The total count in each bin becomes a
particular DYNEVA descriptor, thus creating a standardized numer-
ical vector, which can be used to compare two or more molecules.

Next we utilize Cerius2’s Genetic-PLS10 (GPLS) to evaluate the
descriptors. Partial Least Squares11 (PLS) results are included for
reference only. A key advantage of GPLS is that its genetic
algorithm significantly reduces the number of descriptors used in
the resulting models relative to PLS. To illustrate the increase in

information content due to the inclusion of dynamics, we provide
basic correlation measures (r2, squared correlation coefficient; and
q2, the leave-one-out cross-validation score) for DYNEVA, EEVA,
and MOE12 descriptors (Table 1). Also included in this table is the
EEVA approximation at finite (T ) 800 K) temperature. The first
section shows results for theR4â2 affinity dataset, and the second
section, the Topliss dataset. Using GPLS as the basis for compari-
son, we observe a significant improvement in the DYNEVA
descriptors over the static descriptor data (EEVA and MOE). The
PLS models are likely over-fit. Establishing the physical basis for
the robustness of DYNEVA descriptors will require further
investigation, but we believe that ligand behavior is more broadly
captured in the signature of local field interactions since the
descriptors described herein show improvement over those employ-
ing Gaussian kernelling, such as the case with EEVA.

We show preliminary evidence for asymmetry in the energy
distribution of molecular orbitals. On the basis of this finding, we
have outlined a method of creating descriptors based upon molecular
dynamics at the electronic structure level. Preliminary results dem-
onstrate the promise of the DYNEVA approach, although further
statistical analysis will be required to established its true utility.
Our expectation is that this method can be applied to dynamics
derived from any level of quantum molecular theory. We have
observed the eigenvalue trajectory asymmetry using semiempirical
Hartree-Fock dynamics and have obtained promising preliminary
modeling results on the aforementioned datasets (data not shown).
A key advantage of this semiempirical implementation is that we
have observed a 100-fold speed increase with far less memory
usage. A study of eigenvalue distribution as a function of finite
temperature may also be useful. Rigorous statistical analysis of
DYNEVA descriptors using other datasets is currently underway.
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Figure 3. The asymmetric nature of the eigenvalue data is further illustrated
for the Highest Occupied Molecular Orbital (HOMO): TC-2216 (A),
terbutaline (B), and ethosuximide (c).

Table 1. Comparison of DYNEVA, EEVA, and MOE Descriptor
Models Generated with GPLS and PLSa

PLS GPLS

r 2 q 2 r 2 q 2

R4â2 DYNEVA 0.82 0.06 0.95 0.67
EEVA (T ) 800 K) 0.43 0.00 0.44 0.26
EEVA 0.41 0.13 0.56 0.33
MOE 0.31 0.10 0.38 0.12

Topliss DYNEVA 0.88 0.13 0.95 0.56
EEVA (T ) 800 K) 0.50 0.09 0.72 0.38
EEVA 0.84 0.16 0.80 0.42
MOE 0.20 0.41 0.89 0.51

a Correlation coefficient (r2), leave-one-out cross-validation (q2) scores
for the R4â2 (n ) 30) and Topliss (n ) 20) datasets. See Supporting
Information for additional modeling parameters.
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